Plant Name City, State

Prepared On: 11/09/2018

Prepared By: Name - Title Rep Company

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

Notice

This report has been submitted to Plant Name (Name), in City, State as the Recipient in confidence and it contains trade secrets, as well as privileged information, and/or proprietary work product of Armstrong International, Inc. (Armstrong). In consideration of the receipt of this report and the information and data herein, the Recipient agrees that it will use this document and the information contained herein only for internal use and for the purpose of evaluating Energy Conservation, Safety Measures or other work proposed to be performed by Armstrong (collectively, the "Work"). The Recipient agrees that it will not disclose this report or any part thereof to any third parties, and the Recipient may only disclose this document to those employees involved in the evaluation of the Work on an as-needed basis. The Recipient may make only those copies needed for such internal review.

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

816 Maple Street, Three Rivers, Michigan 49093 Phone: (269) 273-3415 Fax: (269) 273-8742

armstronginternational.com

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. UTILITIES AND STEAM SYSTEM
- 3. OBSERVATIONS
- 4. ASSESSMENT RESULTS / VERIFICATIONS COMPLETED DURING THE AUDIT
- 5. CLOSING

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

1. INTRODUCTION

Armstrong/Rep conducted a Thermal Assessment of the steam and condensate systems at Plant, City, State on Month Date, 20XX.

We appreciate the opportunity to visit your facility and the time and knowledge of your team helping us and making it possible to conduct this assessment.

The following areas were assessed:

- Overall Utilities (metering, management and benchmarking)
- Steam Generation (boilers, efficiency, deaeration, blowdown)
- Steam Distribution (headers, pressure reducing valves, piping practices, leaks, insulation, steam traps)
- Steam Utilization (all users including but not limited to heat exchangers, tanks, tracers, coils)
- Condensate Collection and Return (high pressure and low-pressure headers, receivers, trapping systems, water hammer and back pressure issues)
- Hot Water Generation, Distribution, and Use
- Air Conditioning and Air Heating

The objective of the assessment was to:

- Collect up to date information for the steam and condensate systems and their operation
- Identify opportunities to improve the efficiency of the existing systems resulting in the conservation of fuel, treated water, chemicals, and reducing CO2 emissions
- Identify opportunities to improve the system's safety, reliability, and integrity

Abbreviations used in the Observation Section:

Energy - Fuel, Water, Sewer, Electricity M&R - Maintenance and Reliability Prod - Production and Product thru-put Safety - Safety

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

2. UTILITIES AND STEAM SYSTEM

Site Energy Information

						y momane					
Company Name						Date Aug-18					
Address											
City				State		ZIP		Phone			
Name / Title							e-mail				
Name / Title							e-mail				
Utilities Cost Information	•					Facility details		-			
Utility	Co	ost	Total Cor	nsumption	Annual co	t Production					
	Unit Cost	Units	Qty	Units	\$/year	Total Capacity		Units/year			
Raw Water:		\$/kgal		kgal		Operation		Hours/year			
Treated Water	6.55	\$/kgal	5514.5	kgal	\$ 36,10	6 Operation		days/week			
Sewer 1	5.72	\$/kgal	5514	kgal	\$ 31,54	8 Operation		hours/day			
Chem Treatment		-		-		Shutdown Date					
Primary Fuel	4.22	\$/MMBtu	530240	MMBTU	\$ 225,05	7 Cogeneration and	Steam Genera	ted as By-p	roduct		
Back Up Fuel	4.00	\$/gal	4092	MMBTU	\$ 16,3	7 Power Generation	Capacity		kW		Manufacture
If fueloil #6, S%	1	%				Heat Recovery	- Steam		lb/h		Psig
Electricity	0.0623	\$/kWh	2844	MWh	\$177,12	7	- Hot water		MMBTU		gpm
Own/Purchased Steam		\$/klb		klb		Steam as by-produ	ct?		lb/h		Psig
Steam Generation			•			Major Steam User	S				
Boilers #	Units	1	2	3	4	Equipr	Equipment		Pressure	Ope	ration
Manufacturer		Johnston				(fill details in	(fill details in next tab)		Psig	Cont/Batch	
Year		1998				Tanl	Tanks			Cont	
Туре	WT/FT	FT	FT			Trace	Tracers			Cont	
Rated Capacity	HP	150	100			Rail C	Rail Cars			Batch	
Rated Pressure / Temp	Psig / F										
Operating Press/Temp	Psig / F	150	125								
Avg. Firing Rate	0 - 100%										
Main Fuel Used		Natural Ga	Natural Ga	as							
Back-up Fuel											
% Back-up Fuel Used	0 - 100%										
Flue Gas - O ₂ %	0 - 21%	Not availa	Not availa	ble							
Flue Gas Temperature	F	370	Not availa	ble							
Economizer	Yes/No	No	No			Condensate Return	rn System				
Air Preheater (Yes/No)	Yes/No	No	No			Condensate Return	ned	%		25-50%	
D/A Pressure	Psig	8				Condensate Press	ure	Psig			
Feed Water Temperature	F	225				Condensate Tempe	Condensate Temperature		210		
Boiler Efficiency	%	NA	NA			Where is Condensate Returned To?		?	To Condensate Tank		Tank
Boiler House Efficiency	%	NA				How is Condensate	How is Condensate Returned?		By Mechanical Pump		ump
Boiler Blowdown	%	10-25%	BD Heat r	Yes / No	No	Hot Water Genera	tion				
Feed Water/Make Up Wate	er/Condensa	te Quality				Hot Water System	#		1	2	3
	Units	Condensa	t MUW	FW	Boiler	Method of production	on				
Oil content	mg/l					Capacity installed		MMBTU/h	r		
Conductivity	µS/cm			500-700	2500-550	Temperature		F			
Ferric Oxides	µg/l						Once Trough/Closed Loop C				
рН	-					Average Hot Water	r Production	kgal/day			

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

Steam Distribution System					Major Hot Water Users				
Distribution Header #		1	2	3	Environment	Flow	Water Temperatur	Oper	ration
Head. Pressure Psig		125	150		Equipment			Direct Injection/Once	
Head. Temperature	F	saturated	saturated			gpm	F	Trough/Closed loop	
Winter Flow Rate (average)	klb/h	NA	Peak:						
Summer Flow Rate (average)	klb/h	NA	Peak:						
Est. No. of Steam Traps		350							
Date of Last Trap Survey		Not Available							
Estim. % failure		>15%							
Projects (What Energy Projects Are	∍ Known But N	lot Funded -	Any Additic	nal Comment	s)				
1									
2									

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

816 Maple Street, Three Rivers, Michigan 49093 Phone: (269) 273-3415 Fax: (269) 273-8742

3

3. OBSERVATIONS

	Issue:	sue: Condensate Receiver Venting					
	Category:	Energy	Safety	M&R			
	Location: All condensate receivers						
	Excessive	steam venting	at the conde	nsate receiver	vent.		
	Venting ste	am is a waste	of heat (fuel)), treated wate	er and		
		If recovered	the vented ste	eam will save	energy and		
	water.						
	Issue:	Condensate	Receiver Ven	ting			
	Category:	Safety	Energy	M & R			
	Location:	eiver					
	Excessive venting and liquid draining through the receiver vent						
	due to undersized pump.						
	•			rn . The press orates the conc			
	Issue:	Excessive Blo	wdown and I	No Heat Recov	very		
	Category:	M & R	Prod	Safety	Energy		
	Location:	n: Boiler room					
	The heat of the continuous blowdown is not recovered and is lost						
	to the atmosphere. Also, cold city water is added to reduce the temperature before the drain. Better control of the blowdown						
	rates and recovering the heat of the blowdown can substantially						
	reduce the water usage and the energy losses, as the water temperature is the same as the temperature of the steam						
	generated	erature of the S	steam				

Excessive Blowdown and No Blowdown Heat Recovery

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

816 Maple Street, Three Rivers, Michigan 49093 Phone: (269) 273-3415 Fax: (269) 273-8742

armstronginternational.com

The second second	Issue:	Condensate	Return Line c	onnected to D	rain	
	Category:	M & R	Prod	Safety	Energy	
	Location: Blowdown drain line					
				he drain is a w		
and a second sec				recovered the	e condensate	
		•••	nd sewer cha	-		
	The valve v	vas closed aff	er the discove	əry.		
	Issue:	Missing Insul	ation			
330°F \$FLIR 08/21/18	Category:	M & R	Prod	Safety	Energy	
11:05 AM	Location:		-	_		
	Insulation is missing or damaged. There will be greater heat					
	transfer losses through radiation and convection resulting in fuel					
				eam will cond	ense faster	
	which can l	ead to water I	nammer.			
A CONTRACTOR OF A CONTRACTOR O						
and the second						
118 330						
	Issue:	Undersized [)rin Leg and M	Aissapplied Dr	rin Tran	
	Category:	M & R	Prod	Safety	Energy	
	Location:			HP Boiler		
	The drip legs are main components of the steam distribution system,					
	assuring the quality of the steam at the point of usage. They are					
	provided to:					
				he fast moving a rential can disc		
	the steam tr		e pressure une		narge through	
	If not proper	ly installed or s		ensate cannot b		
				the steam dete		
	steam can ir	nduce water ha	mmer or dama	ge valves and e	equipment.	

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

4. ASSESSMENT RESULTS / VERIFICATIONS COMPLETED DURING THE AUDIT

Potential Optimization	Comment
OVERALL STEAM SYSTEM PROFILE	
Steam System - Measurements and Monitoring	To be Improved
Steam Generation	To be Improved
Fuel	To be Improved
Feedwater	To be Improved
Make-up Water	To be Improved
Steam Distribution - to plant, to areas and/or to individual users	To be Improved
Costs Tracking - fuel, water, sewer, chemicals, steam	To be Improved
Safety	To be Improved
BOILER HOUSE	
Boiler Efficiency - is it measured or calculated?	No
Stack temperature	Not Available
Oxygen in flue gas	Not Available
Combustion Air Supply Temperature	To be Improved
Boiler/Burner Tune-Up	Not Available
Steam Pressure Setting	ОК
Gauges and Instrumentation	To be Improved
Boiler Sizing and Reliability	To be Improved
Steam Quality	To be Improved
Boiler Blow-Down Rate	To be Improved
Boiler Blow-Down Recovery	To be Improved
Deaerator Pressure	ОК
Feed Water Temperature	ОК
Heat Recovery - MUW Pre-Heating	To be Improved
Vents	To be Improved
STEAM DISTRIBUTION	
Proper Piping Practices	To be Improved
Water Hammer	To be Improved
Steam Quality	To be Improved
External Leaks of Steam or Condensate from Pipes, Flanges, etc.	To be Improved
Steam Pressure	To be Improved
Internal Leaks	To be Improved
Insulation	To be Improved
Steam Traps and Steam Trap Management	To be Improved

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

STEAM USERS	
Steam Users / Heat Exchangers Performance - Stall, Air Locked, Vacuum	To be Improved
Point of Use Pressure	ОК
Piping Practices - Users	To be Improved
CONDENSATE AND FLASH STEAM RECOVERY	
Condensate Return - Quantity and Quality	To be Improved
Condensate Return Piping Practices and Sizing	To be Improved
Water Hammer	To be Improved
Flash Steam Recovery/Utilization	To be Improved
HOT WATER	
Hot Water Generation (once through) - Domestic HW, Once Through Hoses	Not Applicable
Hot Water Generation (Recirculation) - HW for Heating, For Process	Not Applicable
Hot Water Distribution	Not Applicable
Hot Water Use	Not Applicable
HVAC	
HVAC - AHU, Unit Heaters, Make-up Air	Not Applicable
Humidification	Not Applicable

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

816 Maple Street, Three Rivers, Michigan 49093 Phone: (269) 273-3415 Fax: (269) 273-8742

armstronginternational.com

5. CLOSING

Rep/Armstrong appreciates the opportunity to assist Plant with the thermal assessment of the steam and condensate systems and welcomes the opportunity to be Plant's partner.

We are pleased to report there is potential for improvement in the areas of safety, reliability, and energy and water waste. During this assessment, the following opportunities were identified:

• Improve the condensate return system

There are multiple locations where the condensate is drained and vents are blowing flash steam and water. An properly designed and operating system will not only reduce costs (makeup water, heating and treating, and sewer charges), but will improve safety and reduce operational and maintenance issues.

Improve piping practices

There are distribution pipes that do not have properly designed (location, size and depth) drip legs and have missapplied drip traps. Excess condensate in steam lines can errode/corrode PRVs, control valves, or any downstream fitting. It can also result in <u>water hammer</u> which will quickly damage fittings, valves, or heating equipment. Excessive pressure drops in the steam distribution system can also be asociated with the bad steam quality

• Improve metering/monitoring

Additional meters (natural gas, water, feed water, steam) and instrumentation could be installed on strategic locations (individual boilers and/or headers) to provide the plant management with better tools to evaluate the system and its efficiency, as well as measure the results of implemented projects.

Improve steam generation efficiency

The high boiler flue gas temperatures present an opportunity for heat recovery. Utilizing the excess heat before discharging the flue gas will improve the system efficiency. The boiler room will benefit from online oxygen monitoring, blowdown optimization and heat recovery, insulation of hot surfaces will yield substantial savings and improve safety.

Armstrong and Hatfield would welcome the opportunity to work with the facility on further analysis of the findings and their development into definitive projects.

Recommended next steps:

- Perform a site-wide steam trap survey and establish a trap/leak/insulation management program
- Training either on site or at our Armstrong facility
- System audit- a complete engineering audit in order to study in details the technical feasibility and the economic interest of each one of the above opportunities
- Develop a Monitoring plan

Armstrong International

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER